МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ федеральное государственное бюджетное образовательное учреждение высшего образования

«Балтийский государственный технический университет «ВОЕНМЕХ» им. Д.Ф. Устинова»

(БГТУ «ВОЕНМЕХ» им. Д.Ф. Устинова

СОГЛАСОВАНО

Председатель экзаменационной комиссии по «Испытаниям для поступления по специальности 2.5.15»

подпись /

В.А. Бабук

УТВЕРЖДЕНО

И.о. ректора, председатель

рисмной комиссии

Е. Шашурин

ПРОГРАММА ВСТУПИТЕЛЬНОГО ИСПЫТАНИЯ

по научной специальности «Тепловые, электроракетные двигатели и энергоустановки летательных аппаратов»

Содержание основных тем испытания

Раздел 1 Общие вопросы теории ракетных двигателей

1.1.Типы ракетных двигателей (РД)

Классификация РД. Ракетные двигатели на химических топливах: ЖРД, РДТТ, ГРД, ПВРД, ВРД. Особенности применения различных типов РД.

1.2. Ракетный двигатель, как тепловой двигатель и как движитель

Уравнение тяги РД. Основные составляющие тяги камеры, место их приложения. Коэффициенты полезного действия РД (термический, тяговый, общий).

Характеристические параметры РД: удельный импульс тяги, характеристическая скорость, коэффициент тяги сопла, удельная масса.

Оценка потерь удельного импульса тяги РД. Расчет тяги и удельного импульса тяги РД с использованием газодинамических функций.

1.3. Течение в соплах РД

Общие сведения об устройстве и оценке совершенства сопел. Режимы недорасширения и перерасширения. Анализ и оценка потерь в соплах. Методы профилирования сопл.

Течение двухфазных потоков в соплах РД. Расчет потерь удельного импульса тяги при расчете двухфазных потоков. Методы оптимизации контура сопл при течении двухфазных потоков: постановка задачи, допущения, алгоритмы расчетов.

Раздел 2 Топлива и процессы горения

- 2.1. Основные сведения о жидких, твердых и гибридных ракетных топливах и их физико-химических характеристиках. Энергетические характеристики топлив.
 - 2.2. Термодинамический расчет процессов в РД.

Основы расчетов термохимических свойств топлив.

Задача расчета сгорания и истечения газов, алгоритмы расчетов. Особенности термодинамических расчетов при наличии конденсированной фазы в продуктах сгорания.

2.3. Теоретические представления о процессах горения.

Турбулентное горение газовых смесей. Диффузионное горение. Горение капельно-газовых сред. Процессы воспламенения и погасания. Теория детонационного горения. Механизмы горения в ЖРД.

Горение твердых ракетных топлив: баллиститных и смесевых.

2.4. Основы теории теплообмена в РД

Особенности и конвективного теплообмена в камере сгорания и сопле. Методы расчета конвективных тепловых потоков на основе решения уравнений пограничного слоя. Расчеты конвективного теплообмена на основе теории подобия.

Лучистый теплообмен в условиях камеры сгорания и сопла РД. Расчет лучистых тепловых потоков. Теплозащитные покрытия и механизмы их разрушения.

Раздел 3 Жидкостные РД

3.1. Теоретические основы выбора схемы РД и параметров.

Вытеснительные схемы и их особенности. Турбонасосные схемы без сожигания и с дожиганием, их особенности, области применения.

3.2. Процессы в камере сгорания и их моделирование.

Основные требования к организации процессов смесеобразования в двигателях схем "жидкость-жидкость", "газ-жидкость", "газ-газ".

Теория и расчет струйных и центробежных жидкостных форсунок. Особенности расчета двухкомпонентных газожидкостных форсунок. Особенности расчета двухкомпонентных жидкостных центробежных форсунок. Спектр распыла форсунок.

Движение капель в потоке и их дробление. Прогрев и испарение капель. Теоретический метод расчета рабочего процесса на начальном участке. Турбулентное перемешивание газов при их движении в камере сгорания.

Выбор и определение основных параметров камеры сгорания. Особенности процессов в газогенераторах (однокомпонентных и двухкомпонентных, окислительных и восстановительных).

3.3. Охлаждение и теплозащита в ЖРД

Особенности и схемы теплозащиты стенок камеры ЖРД. Охлаждавшие свойства различных компонентов топлив. Физические основы и методы расчета наружного и

внутреннего охлаждения. Способы интенсификации наружного охлаждения. Особенности расчета тепловых потоков в стенку при завесном охлаждении. Специфика расчета лучистого потока в камере ЖРД. Расчеты радиационного охлаждения. Применение теплозащитных покрытий.

3.4. Неустойчивость рабочего процесса в ЖРД

Общие сведения о неустойчивости горения и классификация типов неустойчивости. Теория низкочастотных колебание, методы их подавления.

Высокочастотные колебания: акустические свойства камеры сгорания, механизмы обратной связи. Методы оценки устойчивости рабочего процесса при испытаниях ЖРД. Подавление высокочастотных колебаний изменением характеристик смесеобразования и применение акустических демпферов.

3.5. Системы подачи топлива

Типы систем подачи в ЖРД и области их применения. Расчет и выбор оптимальной системы подачи в зависимости от назначения двигателя.

Принципиальны схемы турбонасосных агрегатов (THA). Расчет основных параметров турбин и насосов ТНА. Совместная работа насосов с турбиной.

Факторы, определяющие экономичность систем ТНА. Потери в насосах, турбинах и магистралях. Основные пути повышения экономичности ТНА. Выбор оптимальных параметров ТНА.

3.6. Особенности и расчет ЖРД с дожиганием.

Расчетные схемы и основные уравнения. Определение потребных давлений на выходе из насосов. Располагаемая и потребная мощность. Уравнение энергетического баланса и совмещенная характеристика системы. Регулирование тяги ЖРД с дожиганием. Расчет и выбор оптимальных параметров ЖРД.

3.7. Динамика и регулирование ЖРД

Требования к двигателю как объекту регулирования. Двигатель как исполнительный орган системы управления летательным аппаратом.

Взаимосвязь процессов в двигателе и динамические характеристики двигателя.

Особенности процессов в элементах двигателя при запуске. Переходные процессы при выключении ЖРД.

3.8. Основные тенденции и перспективы развития ЖРД

Повышение удельного импульса путем увеличения давления в камере сгорания и степени расширения газов в сопле, а также применения более эффективных компонентов. Перспективы применения легких металлов в качестве горючих.

Повышение надежности, ресурса, многократности применения ЖРД создание двигателей с глубоким регулированием тяги.

4 Раздел твердотопливные РД

4.1. Особенности рабочего процесса в РДТТ

Скорость горения ТРТ, как определяющий параметр внутрибаллистических расчетов. Основные сведения о законах горения баллиститных и смесевых ТРТ. Зависимости скорости горения ТРТ от давления и начальной температуры. Понятие о стационарной и нестационарной скоростях горения ТРТ. Горение твердых ракетных теплив в условиях обдува горящей поверхности газовым потоком.

Общие законы изменения формы заряда в процессе горения. Типы зарядов ТРТ. Плотность заряжания камеры сгорания, основные ограничения плотности заряжания. Расчет геометрических размеров основных типов зарядов ТРТ.

4.2. Газодинамический расчет РДТТ

Дифференциальные уравнения движения продуктов сгорания ТРТ вдоль горящей поверхности заряда в общем случае неустановившегося течения и в случае квазистационарного режима. Расчет течения газов при различных формах заряда ТРТ.

Процесс воспламенения заряда ТРТ. Выбор типа и массы заряда воспламенительного устройства. Приближенный расчет изменения давления в камере при запуске двигателя. Системы уравнений для определения изменения давления и температуры газов в камере РДТТ (0-мерная и одномерная постановки). Изменение давления в камере после полного выгорания заряда ТРТ. Влияние уноса массы в районе критического сечения сопла на рабочий процесс РДТТ.

4.3. Тепловой расчет РДТТ

Принципы расчета параметров тепловой защиты в камере сгорания и сопловом блоке. Определение параметров тепловой защиты критического сечения соплового блока.

4.4. Прочностной расчет РДТТ

Определение параметров несущих элементов камеры сгорания и соплового блока для случая использования металлических и композиционных материалов. Прочностной расчет вкладного и скрепленного зарядов.

4.4. Разброс баллистических параметров РДТТ

Причины отклонения параметров РДТТ от номинальной величины и их анализ. Способы уменьшения разброса баллистических параметров РДТТ. Определение разброса баллистических параметров РДТТ по результатам испытаний двигателей и методами математического моделирования.

4.5. Проектирование РДТТ

Системный подход к проектированию РДТТ. Определение основных проектных параметров двигателя. Выбор оптимальных значений давления в камере сгорания и на срезе сопла.

4.6. Регулирование тяги РДТТ по величине и направлению

Способы регулирования тяги РДТТ по величине: предстартовое регулирование и регулирование в полетные условиях. Виды устройств для изменения направления вектора тяги и их сравнительная оценка. Способы отсечки тяги. Пути создания РДТТ с многократным включением.

4.7. Неустойчивость рабочего процесса в РДТТ

Низкочастотные колебания: влияние давления и геометрических размеров камеры. Особенности высокочастотной неустойчивости в РДТТ. Влияние частиц конденсированной фазы продуктов сгорания на высокочастотные колебания.

4.8. Особенности рабочего процесса в гибридных ракетных двигателях

Принципиальные схемы гибридных ракетных двигателей. Расчет основных параметров рабочего процесса РД.

4.9. Перспективы развития РДТТ

Применение высокоэффективных компонентов ТРТ. Разработка двигателей с регулированием тяги по величине.

5. Раздел воздушно-реактивные двигатели

- 5.1. Теория и расчет воздушно-реактивных двигателей. Термогазодинамические и энергетические основы авиационных двигателей. Термогазодинамические расчеты двигателей различных схем (турбореактивные, двухконтурные с раздельными соплами и со смешением потоков, турбовинтовые и турбовальные, прямоточные, комбинированные). Влияние параметров рабочего процесса на удельные параметры двигателей различных схем
- 5.2. Конструкции и компоновки газотурбинных и прямоточных двигателей. Входные устройства и их характеристики; организация рабочего процесса и характеристики камер сгорания; основные типы авиационных лопаточных машин; параметры, характеризующие эффективность их рабочего процесса; газодинамика компрессоров и газовых турбин; расчеты компрессоров и турбин по среднему диаметру; согласование их параметров в двигателях; характеристики лопаточных машин; сопла и выходные устройства и их характеристики.

Рекомендуемая литература и материалы для подготовки

Основная литература:

- 1. Алемасов В.Е., Дрегалин А.Ф., Тишин А.П. Теория ракетных двигателей. М.: Машиностроение, 1980, 533 с.
- 2. Добровольский М.В. Жидкостные ракетные двигатели. Основы проектирования. Учебник для вузов: М.: Из-во МГТУ им. Н.Э. Баумана, 2005.
- 3. Васильев А.П., Кудрявцев В.М., Кузнецов В.А. Основы теории и расчета жидкостных ракетных двигателей. Учебник для вузов: М.: Из-во МГТУ им. Н.Э. Баумана, 2022. 776 с.
- 4. Липанов, А. М. Теоретические основы отработки твёрдых ракетных топлив. Инт прикл. механики, Рос. акад. наук. Ижевск, 2003. 83 с.
- 5. Липанов А.М., Алиев А.В. Проектирование ракетных двигателей твердого топлива. Учебник для студентов вузов. М.: Машиностроение, 1995. 400 с.
- 6. Фахрутдинов И.Х., Котельников А.В. Конструкция и проектирование ракетных двигателей твердого топлива. М.: Машиностроение, 1987, 325 с.
- 7. Шишков А.А., Панин С.Д., Румянцев Б.В. Рабочие процессы в ракетных двигателях твердого топлива. М.: Машиностроение, 1989, 239 с.
- 8. Виницкий А.М. Ракетные двигатели на твердом топливе. М.: Машиностроение, 1973, 347 с.

- 9. Штехер М.С. Топлива и рабочие тела ракетных двигателей. М.: Машиностроение, 1976, 302 с.
- 10. Пономаренко В.К. Ракетные топлива. СПб.: Военная инженерно-космическая краснознаменная академия им. А.Ф. Можайского, 1995, 619 с.
- 11. Бакулев В.И., Голубев В.А., Нечаев Ю.Н. и др. Теория, расчет и проектирование авиационных двигателей и энергетических установок / под ред. В.А. Сосунова, В.М. Чепкина. М.: МАИ, 2003.
- 12. Кулагин В.В. Теория, расчет и проектирование газотурбинных двигателей. М.: Машиностроение, 2002.
- 13. Теория и расчет воздушно-реактивных двигателей / под ред. С.М. Шляхтенко. М.: Машиностроение, 1987.

14.

Дополнительная литература:

- 1. Алиев А.В., Бабук В.А., Ларионов Б.И. и др. Внутренняя баллистика РДТТ. (Под ред. А.М. Липанова, Ю.М. Мелехина), М., «Машиностроение», с. 615, 2007.
- 2. Газодинамические и теплофизические процессы в ракетных двигателях твердого топлива: научное издание / А.М. Губертов, В.В. Миронов и др.; Ред. А.С. Коротеев. М.: Машиностроение, 2004.
- 3. Энергетические конденсированные системы: краткий энциклопедический словарь/ ред. Б. П. Жуков. М.: Янус-К, 1999. 595 с
- 4. Скубачевский Г. С. Авиационные ГТД, конструкция и расчет деталей. М.: Машиностроение, 1981.-552 с.
- 5. Конструкция и проектирование авиационных газотурбинных двигателей: Учебник для студентов вузов по специальности «Авиационные двигатели и энергетические установки». А. Вьюнов, Ю. И. Гусев, А. В. Карпов и др.; Под общ. ред. Д. В. Хронина. —М.: Машиностроение, 1989. —368 с.: ил.