МИНОБРНАУКИ РОССИИ

федеральное государственное бюджетное образовательное учреждение высшего образования «Балтийский государственный технический университет «ВОЕНМЕХ» им. Д.Ф. Устинова» (БГТУ «ВОЕНМЕХ» им. Д.Ф. Устинова)

Кафедра А9 «Плазмогазодинамика и теплотехника»

ВЕРЖДАЮ

ВГТУ «ВОРНМЕХ» им. Д.Ф. Устинова

С.А. Матвеев

2022 г.

КАНДИДАТСКИЙ ЭКЗАМЕН ПО ДИСЦИПЛИНЕ

Механика жидкости, газа и плазмы

Специальность: 1.1.9 Механика жидкости, газа и плазмы

В основу настоящей программы положены следующие дисциплины: механика сплошной среды, гидромеханика, газовая динамика, термодинамика, электродинамика.

Программа разработана экспертным советом Высшей аттестационной комиссии Министерства образования Российской Федерации по математике и механике при участии Московского государственного университета им. М.В. Ломоносова, Московского физикотехнического института (государственного университета) и Института прикладной механики Уральского отделения РАН.

1. Основные понятия

Понятие сплошной среды. Микроскопические, статистические и макроскопические феноменологические методы описания свойств, взаимодействий и движений материальных сред.

Области приложения механики жидкости, газа и плазмы. Механические модели, теоретическая схематизация и постановка задач, экспериментальные методы исследований.

Основные исторические этапы в развитии механики жидкости и газа.

2. Кинематика сплошных сред

Системы отсчета и системы координат. Лагранжевы и эйлеровы координаты. Инерциальные и неинерциальные системы отсчета в ньютоновской механике.

Точки зрения Эйлера и Лагранжа при изучении движения сплошных сред.

Определения и свойства кинематических характеристик движения: перемещения, траектории, скорость, линии тока, критические точки, ускорение, тензор скоростей деформации и его инварианты, вектор вихря, потенциал скорости, циркуляция скорости, установившееся и неустановившееся движение среды. Кинематические свойства вихрей.

3. Основные понятия и уравнения динамики и термодинамики

Закон сохранения массы. Уравнение неразрывности в переменных Эйлера и Лагранжа. Условие несжимаемости. Многокомпонентные смеси. Потоки диффузии. Уравнения неразрывности в форме Эйлера для многокомпонентных смесей.

Массовые и поверхностные, внутренние и внешние силы. Законы сохранения количества движения и моментов количества движения для конечных масс сплошной среды. Дифференциальные уравнения движения и момента количества движения сплошной среды.

Работа внутренних поверхностных сил. Кинетическая энергия и уравнение живых сил для сплошной среды в интегральной и дифференциальной формах.

Понятие о параметрах состояния, пространстве состояний, процессах и циклах. Закон сохранения энергии, внутренняя энергия. Уравнение притока тепла. Вектор потока тепла. Дифференциальные уравнения энергии и притока тепла. Законы теплопроводности Фурье. Различные частные процессы: адиабатический, изотермический и др. Обратимые и необратимые процессы. Совершенный газ. Цикл Карно. Второй закон термодинамики. Энтропия и абсолютная температура. Некомпенсированное тепло и производство энтропии.

Неравенство диссипации, тождество Гиббса. Диссипативная функция. Основные макроскопические механизмы диссипации. Понятие о принципе Онзагера. Уравнения состояния. Термодинамические потенциалы двухпараметрических сред.

4. Модели жидких и газообразных сред

Модель идеальной жидкости. Уравнения Эйлера. Полные системы уравнений для идеальной, несжимаемой и сжимаемой жидкостей. Начальные и граничные условия.

Интегралы Бернулли и КошиЛагранжа. Явление кавитации.

Теорема Томсона и динамические теоремы о вихрях . Возникновение вихрей. Теорема Бьеркнеса.

Модель вязкой жидкости. Линейно-вязкая (ньютоновская) жидкость. Уравнения Навье-Стокса.

Полные системы уравнений для вязкой несжимаемой и сжимаемой жидкостей. Начальные и граничные условия. Диссипация энергии в вязкой теплопроводной жидкости.

Применение интегральных соотношений к конечным объемам установившемся движении. Теория реактивной тяги и теория идеального пропеллера.

5. Поверхности разрыва в течениях жидкости, газа и плазмы

Поверхности слабых и сильных разрывов. Разрывы сплошности.

Условия на поверхностях сильного разрыва в материальных средах и в электромагнитном поле. Тангенциальные разрывы и ударные волны.

6. Гидростатика

Равновесие жидкости и газа в поле потенциальных массовых сил. Закон Архимеда. Равновесие и устойчивость плавающих тел и атмосферы.

7. Движение идеальной несжимаемой жидкости

Общая теория непрерывных потенциальных движений несжимаемой жидкости. Свойства гармонических функций. Многозначность потенциала в многосвязных областях.

Кинематическая задача о произвольном движении твердого тела в неограниченном объеме идеальной несжимаемой жидкости. Энергия, количество движения и момент количества движения жидкости при движении в ней твердого тела. Движение сферы в илеальной жидкости.

Силы воздействия идеальной жидкости на тело, движущееся в безграничной массе жидкости.

Основы теории присоединенных масс. Парадокс Даламбера.

Плоские движения идеальной жидкости. Функция тока. Применение методов теории аналитических функций комплексного переменного для решения плоских гидродинамики и аэродинамики.

Стационарное обтекание жидкостью цилиндра и профиля. Формулы Чаплыгина и

теорема Жуковского. Правило Жуковского и Чаплыгина определения циркуляции вокруг крыльев с острой задней кромкой. Нестационарное обтекание профилей.

Плоские задачи о струйных течениях жидкости. Обтекание тел с отрывом струй.

Схемы Кирхгофа, Эфроса и др.

Определение поля скоростей по заданным вихрям и источникам. Формулы Био-Савара. Прямолинейный и кольцевой вихри. Законы распределения давлений, силы, обусловливающие вынужденное движение прямолинейных вихрей в плоском потоке.

Постановка задачи и основные результаты теории крыла конечного размаха. Несущая

линия и несущая поверхность.

Постановка задачи Коши - Пуассона о волнах на поверхности тяжелой несжимаемой жидкости.

Гармонические волны. Фазовая и групповая скорость. Дисперсия волн. Перенос

энергии прогрессивными волнами.

Теория мелкой воды. Уравнения Буссинеска и Кортевега-де-Вриза. Нелинейные волны. Солитон.

8. Движение вязкой жидкости. Теория пограничного слоя. Турбулентность

Ламинарное движение несжимаемой вязкой жидкости. Течения Куэтта и Пуазейля. Течение вязкой жидкости в диффузоре. Диффузия вихря.

Приближения Стокса и Озеена. Задача о движении сферы в вязкой жидкости в постановке Стокса.

Ламинарный пограничный слой. Задача Блазиуса. Интегральные соотношения и основанные на их использовании приближенные методы в теории ламинарного пограничного слоя.

Явление отрыва пограничного слоя. Устойчивость пограничного слоя. Теплообмен с

потоком на основе теории пограничного слоя.

Турбулентность. Опыт Рейнольдса. Уравнения Рейнольдса. Турбулентный перенос тепла и вещества. Полуэмпирические теории турбулентности. Профиль скорости в пограничном слое.

Логарифмический закон. Прямое численное решение уравнений гидромеханики при

наличии турбулентности.

Свободная и вынужденная конвекция. Приближение Буссинеска. Линейная неустойчивость подогреваемого плоского слоя и порог возникновения конвекции. Понятие о странном аттракторе.

Движение жидкости и газа в пористой среде. Закон Дарси. Система дифференциальных уравнений подземной гидрогазодинамики. Неустановившаяся

фильтрация газа. Примеры точных автомодельных решений.

9. Движение сжимаемой жидкости. Газовая динамика

Распространение малых возмущений в сжимаемой жидкости. Волновое уравнение. Скорость звука.

Запаздывающие потенциалы. Эффект Допплера. Конус Маха. Уравнения газовой

динамики. Характеристики.

Влияние сжимаемости на форму трубок тока при установившемся движении.

Элементарная теория сопла Лаваля.

Одномерные неустановившиеся движения газов с плоскими, цилиндрическими и сферическими волнами. Автомодельные движения и классы соответствующих задач. Задачи о поршне и о сильном взрыве в газе.

Волны Римана. Эффект опрокидывания волн. Адиабата Гюгонио. Теорема Цемплена.

Эволюционные и неэволюционные разрывы.

Теория волн детонации и горения. Правило Жуге и его обоснование.

Задача о структуре сильного разрыва.

Качественное описание решения задачи о распаде произвольного разрыва.

Плоские стационарные сверхзвуковые течения газа. Метод характеристик. Течение Прандтля-Майера.

Косой скачок уплотнения. Обтекание сверхзвуковым потоком газа клина и конуса.

Понятие об обтекании тел газом с отошедшей ударной волной.

Линейная теория обтекания тонких профилей и тел вращения.

Течения с гиперзвуковыми скоростями. Закон сопротивления Ньютона.

10. Электромагнитные явления в жидкостях

Электромагнитное поле. Уравнения Максвелла в пустоте. Взаимодействие электромагнитного поля с проводниками. Сила Лоренца. Закон сохранения полного заряда. Закон Ома. Среды с идеальной проводимостью. Вектор и уравнение Умова-Пойнтинга. Джоулево тепло. Уравнения импульса и притока тепла для проводящей среды.

Уравнения магнитной гидродинамики. Условия вмороженности магнитного поля в среду. Понятие о поляризации и намагничивании жидкостей.

11. Физическое подобие, моделирование

Система определяющих параметров для выделенного класса явлений. Основные и производные единицы измерения. Формула размерностей. П-теорема. Примеры приложений. Определение физического подобия. Моделирование. Критерии подобия. Числа Эйлера, Маха, Фруда, Рейнольдса, Струхаля, Прандтля.

Рекомендуемая основная литература

- 1. Ландау Л.Д., Лифшиц Е.М.. Гидродинамика 6-е изд. М.: Наука, 2006
- 2. Кочин Н.Е., Кибель И.А., Розе Н.В. Теоретическая гидромеханика. Ч. І, ІІ. М.: Физматгиз, 1963.
 - 3. Седов Л.И. Механика сплошной среды. Т. І, ІІ. 5-е изд. М.: Наука, 1994.
- 4. Седов Л.И. Методы подобия и размерности в механике. 10-е изд. М.: Наука, 1987.
 - 5. Ландау Л.Д., Лифшиц Е.М. Гидродинамика. 3-е изд. М.: Наука, 1986.
 - 6. Лойцянский Л.Г. Механика жидкости и газа. 5-е изд. М.: Наука, 1978.
 - 7. Черный Г.Г. Газовая динамика. М.: Наука, 1988.
- 8. Куликовский А.Г., Любимов Г.А. Магнитная гидродинамика. М.: Физматгиз, 1962.
- 9. Слезкин Н.А. Динамика вязкой несжимаемой жидкости. М.: Гос. изд-во физ.-тех. лит-ры,1955.
 - 10. Прандтль Л. Гидроаэромеханика. РХД, 2000.
 - 11. Шлихтинг Г. Теория пограничного слоя. М.: Наука, 1974.
- 12. Савельев Ю.П. Лекции по основам механики вязкой жидкости и газа. СПб, Наука. 2014
- 13. Смирнов Б. М. Свойства газоразрядной плазмы. СПб. : Изд-во Политехн. ун-та. 2010
- 14. Волков К.Н., Емельянов В.Н. Течения и теплообмен в каналах и вращающихся полостях. М.: ФИЗМАТЛИТ, 2010. 488 с. ISBN 978-5-9221-1182-9.
- 15. Волков К.Н., Емельянов В.Н. Вычислительные технологии в задачах механики жидкости и газа. М.: ФИЗМАТЛИТ, 2012. 468 с. ISBN 978-5-9221-1438-7
- 16. Волков К.Н., Дерюгин Ю.Н., Емельянов В.Н., Карпенко А.Г., Козелков А.С., Тетерина И.В. Методы ускорения газодинамических расчетов на неструктурированных сетках / Под ред. проф. В.Н. Емельянова. М.: ФИЗМАТЛИТ, 2013. 536 с.
- 17. Волков К.Н., Емельянов В.Н. Течения газа с частицами. М.: Физматлит, 2008. 608 с. ISBN: 978-5-9221-1000-2008
- 18. Волков К.Н., Емельянов В.Н. Газовые течения с массоподводом в каналах и трактах энергоустановок М.: ФИЗМАТЛИТ, 2011. 464 с. ISBN: 978-5- 9221-1350-2
- 19. Волков К.Н., Емельянов В.Н. Моделирование крупных вихрей в расчетах турбулентных течений. Москва: Физматлит, 2008. 368 с. ISBN: 978-5- 9221-0920-8 с.

Дополнительная литература

- 1. Ландау Л.Д., Лифшиц Е.М.. Гидродинамика 6-е изд. М.: Наука, 2006
- 2. Кочин Н.Е., Кибель И.А., Розе Н.В. Теоретическая гидромеханика. Ч. І, ІІ. М.: Физматгиз,1963.
 - 3. Седов Л.И. Механика сплошной среды. Т. І, ІІ. 5-е изд. М.: Наука, 1994.
- 4. Седов Л.И. Методы подобия и размерности в механике. 10-е изд. М.: Наука, 1987.
 - 5. Ландау Л.Д., Лифшиц Е.М. Гидродинамика. 3-е изд. М.: Наука, 1986.
 - 6. Лойцянский Л.Г. Механика жидкости и газа. 5-е изд. М.: Наука, 1978.
 - 7. Черный Г.Г. Газовая динамика. М.: Наука, 1988.
- 8. Куликовский А.Г., Любимов Г.А. Магнитная гидродинамика. М.: Физматгиз, 1962.
- 9. Слезкин Н.А. Динамика вязкой несжимаемой жидкости. М.: Гос. изд-во физ.-тех. лит-ры,1955.
 - 10. Прандтль Л. Гидроаэромеханика. РХД, 2000.
 - 11. Шлихтинг Г. Теория пограничного слоя. М.: Наука, 1974.

12. Внутренняя баллистика РДТТ. Под ред. акад РАН А.М. Липанова и Ю.М. Милехина. М.: Машиностроение. 2007. -504 с.

13. Савельев С.К., Емельянов В.Н., Бендерский. Внутренняя газодинамика РДТТ.

СПб:, Недра, 2007. – 268 с.

14. Белов И.А., Емельянов В.Н. Разностное моделирование течений газа и жидкости. — Л.: ЛМИ, 1982. — 92 с.

- Андерсон Д., Таннехилл Дж., Плетчер Р. Вычислительная гидромеханика и теплообмен. В 2-х т.— М.: Мир, 1990.
- Оран Б., Борис Дж. Численное моделирование реагирующих потоков.— М.: Мир, 1990.—662 с.
- 17. Емельянов В.Н., Мясоедова О.В. Введение в основные методы вычислительной гидрогазодинамики. – Л.: ЛМИ, 1991. – 142 с.
- Емельянов В.Н. Теория напряжений и основные модели механики сплошной среды: учебное пособие Балт. гос. техн. ун-т. – СПб., 2006. – 160 с.
- Флетчер Л. Вычислительные методы в динамике жидкостей. В 2-х т.- М.: Мир, 1991.
- Либби П., Вильямс Ф. Турбулентные течения реагирующих газов. М.: Мир, 20. 1983.-328 c.
 - Нигматулин Р.И. Динамика многофазных сред. В 2-х т. М.: Наука, 1987. 21.
 - Бай Ши-и Магнитная газодинамика и динамика плазмы. М.: Мир, 1964. 22.
 - Кларк Дж. Макчесни М. Динамика реальных газов М.: Мир, 1967. 566 с. 23.
 - Лонгмайер К. Физика плазмы. М.: Атомиздат, 1966. 342 с. 24.
- Семиохин И.А. Элементарные процессы в низкотемпературной плазме. М.: 25. Изд-во МГУ, 1988. – 142 с.
- Неравновесные физико-химические процессы в аэродинамике. Под. ред. Г.И. Майкапара М.: Машиностроение 1972. – 344 с.
- Гинзбург И.П. Трение и теплопередача при движении смеси газов. Л.: Изд-во ЛГУ, 1975. – 278 с.
 - 28. Щетинков Е.С. Физика горения газов. М.: ФМ, 1965. 740 с.
 - 29. Райзер Ю.П. Физика газового разряда. М.: Наука, 1992. 536 с.
- Зельдович Я.Б., Райзер Ю.П. Физика ударных волн и высокотемпратурных гидродинамических явлений. М.: Наука, 1966. – 688 с.